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<Final Research Goal>

1. Fabricate and characterize conductive polypyrrole-based nanowire.

2. Evaluate electric-field mediated circulating cancer cell capture/release efficiency using

conductive nanowire.

<Research Methods and Results>

1. Fabricate and characterize conductive polypyrrole-based nanowires

The experimental conditions for fabricating anodic aluminium oxide (AAQO) template were
optimized.

Synthetic routes for the fabrication of conductive polypyrrole-based nanowire with
diverse diameters and lengths were explored.

The method for decorating nanostructured surface with specific ligands (e.g.,
anti-EpCAM) were developed and evaluated their biological activity.

Functionalized nanoparticles were incorporated into conductive polypyrrole-based

nanowire and evaluated their chemical/biological activity.

2. Evaluate electric-field mediated circulating cancer cell capture/release efficiency using

conductive nanowires.

We characterized the effect of anti—-EpCAM on the preferential adsorption of a cell
suspension of EpCAM-positive cancer cells (MCF7 breast cancer and PC3 prostate
cancer cells) and EpCAM-negative cancer cells (Hela cervical cancer cells) on Ppy
substrates.

A methodology for non-destructively releasing captured cancer cells from anti-EpCAM -
immobilized, biotin—-doped Ppy were developed.

The released cells were collected and re-cultured to test viability.

According to the cell capture and release performance using artificial blood samples, a
series of cell spiking experiments demonstrated high capture efficiency.

A conductive nano-roughened microfluidic device was developed and demonstrated its
use as an electrically modulated capture and release system for studying rare circulating
tumor cells (CTCs).




¢ An integrated multifunctional system was constructed by conductive
disulfide-biotindoped polypyrrole nanowires (SS-biotin-Ppy NWs) for capture, release,

and in situ quantification of circulating tumor cells (CTCs).

<Accomplishment>

Quantitative

Number of publication of SCI journals: 8 papers / 3 papers = 267%

Cumulative IF 47.05 / 14 = 336%

Qualitative

- Provide an original technology for fabricating multifunctional conductive polymer
nanowire.

— Offer the ability to capture circulating tumor cells with high efficiency and
non-detrimentally release of the captured cancer cell in response to the applied electric
fields.

- Expect to the transfer of technical know—-how about electric—field mediated CTC

capture/release system.
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1.1. Nanostructured substrates as an efficient platform for cell growth

Numerous cellular processes including survival, proliferation, differentiation and migration
are initially manipulated by the formation of cell adhesions to underlying substrate (i.e., extracellular
matrix (ECM)) by mediating cell-cell and cell-ECM substrate that subsequently trigger a series of
biochemical signaling pathways. As the engineered nanostructures mimic the nano-architecture of
the natural ECM, the interests in cell - substrate interactions have been stimulated and the attempts
to engineer the surface adapted into traditional cell biological work have been made. Significant
efforts have been devoted for the farication of nanostructured materials due to their unique
properties including nanosize, high surface area-to-volume ratio, high porosity, and tunable
physicochemical properties. Such nanostructured materials analogus to the components of ECM
actively regulate cellular responses by creating artificial microenvironments which resemble the
micro/nano-structure and chemical composition in the body.

Recently, some efforts are directed toward designing ECM-mimicking nanostructured
materials as templates (scaffolds) to support cell growth and function. Ma et al has
demonstrated that nano-textured polymeric surfaces show the potential for bone regeneration
by differentiating MSCs towards osteoblastic cell types.! Webster et al shows that the fibrous
carbon nanotube substrates provide a suitable environment for cell adhesion and proliferation
by mimicking unique topographic and porous features of ECM.? Additionally, the electrical
conductivity of CNT scaffolds guide and control the adhesion and proliferation of interacting
cells in a desired way. Vertical nanowire (NW) substrates were favorable for fibroblast cell
attachment, proliferation, and differenciation by mediating cell-to—cell adhesion and function on
the ECM-resembling assembly.® Park et al has demonstrated that the electrospun polymer
nanofibers produced by covalently grafting with cell adhesive peptide promote the cellular
responses in a controlled way.® Such recent findings indicated that nanostructured surfaces
with enhanced morphology and functionalities provide specific structural and chemical cues for
improved cellular performance. Indeed, compared to flat substrate, the cells grown on
nanostructured surfaces produce many lamellipodia, filopodia, microspikes, and microville,

supporting that cell makes stable connections to a substrate.



Figure 1 1 The cell growth on various nanostructured Substrates

Accordingly, nanostructured surface has been actively investigated as a platform to achieve a
better understanding of how nanostructures affect cellular behaviors such as adhesion,

viability, migration, differenciation, and morphology.

1.2. The conductive polymer substrates for biological applications

The fabrication methods for conductive polymer composites have been actively
investigated for various applications, in particular prosthetic devices, tissue engineering
scaffolds in human body, and controlled drug release. Recently, conducting polymers have
attracted much interest as suitable matrices in drug delivery system. Indeed, considerable
improvements in the performance of conducting polymer with electrochemically controlled drug
release profile have been achieved. Conducting polymers such as polypyrrole (Ppy) can be
electrochemically deposited on electrodes by entrapping a variety of anions and cations
including anti-cancer drugs, growth factors, anti-inflammatory drugs, ATP, glutamate and
protonated dopamine.”® These dopants inside the membrane can be released in response to
electrical stimulation. Site—specific drug delivery in the vicinity of an implantable device can
enhance the performance of drugs and also reduce the exposure of the drug to the whole

body and thus prevent potential toxicity.

a) poly(p-phenylene) d) polythiophene

@

b) poly(p-phenylene vinylene)  €) polypyrrole

c) trans- polyacetylene 1) polyaniline

H
T T oL 0L
P
N M
H

Figure 1-2. The basic class of conducting polymer materials.

On the other hand, conducting polymers are being considered as an unique artificial platform
to engineer cellular interactions due to their excellent biocompatibility and low cytotoxicity. An
interfacial contact between conducting polymer-based substrate and cells not only controls cell
behavior but also promotes electrical signals to stimulate the cell-specific biological function.
Inspired by these features, this unique cell-polymer interface seems to be well suited as

platform for cancer cell detection, capture and/or sorting in view of their versatility, stability



and specificity. Conducting polymer offers the potential of serving as a biologically inspired
platform: i) The spontaneous reversible red-ox reaction of conducting surfaces enables the
release of biomolecules in a controlled way. ii) Given that conducting polymer not only
reduces the impedance of the electrode to facilitate the signal transport with the tissue but
also promotes the cell adhesion in the presence of peptide fragments on the surface of the
particles, these platform can be further utilized as a biosensor or cell-related diagnostic and
therapeutic platforms. 1iii) Such biocompatible polymer offers suitable functionalities for
conjugation to biomolecules. iv) Conducting polymer can serve as a mechanical buffer between
hard inorganic surface and soft tissue and thus facilitate the adhesion of desired cells with
long-term stability. v) The chemical substances (e.g., drugs, nerve growth factors,
neurotrophic factors, etc) embedded in conducting polymer films can be released in desirable
amounts in response to electrical stimulation over an extended period. In addition, the
simplicity of fabrication allows our construction to be integrated with conventional cell-chip
devices that are already clinically used. The most widely studied classes of conductive
polymers include polyacetylene, polypyrrole, and polyaniline. Of them, polypyrrole has been
actively investigated due to its aqueous solubility, low oxidation potential, high conductivity,

and biocompatibility with mammalian cells.

1.3. Traditional cell capturing and releasing methods

The manipulation of cell - substrate interactions is essential to achieve a better
understanding for isolation and interrogation of living cells. The isolation of cell subpopulations
from the heterogeneous population in blood or other body fluids is important for the proper
applications in both basic cell biology studies and clinical diagnostics. Particularly, as the
detection of very low levels of cancer cells from blood is critically important in deciding
cancer in the early stages, cell isolation is essential for elucidating cancer development and
progression mechanisms. Cell isolation has been attempted through various strategies such as
the size or volume, density, or electrical properties, depending on the methods such as
filtration, centrifugation, dielectrophoresis or affinity binding. Among them, affinity binding is
most commonly employed due to its high specificity. Cell isolation can be conducted by
recognizing surface-immobilized ligands, such as antibodies, to antigens present on target cell
membrane. Relying on such antigen—antibody specificity, magnetic-activated cell sorting
(MACS) and fluorescence activated cell sorting (FACS) are currently utilized to achieve
specific cell isolation. MACS as a single-parameter cell isolator uses a magnetic field to sort
microbeads specifically bound to the target cells in conjunction with antibody-based affinity.
FACS enables simultaneous manipulation of multiple species of fluorescently labeled
antibodies and thus allows sorting of multiple cell types. However, current cell isolation
methods result in relatively low yield rates requiring complex and expensive experimental
settings.

On the other hand, circulating tumor cell (CTC) has been actively investigated as a
emerging tumor biomarker as it provides a valuable information in diagnosis and prognosis in

cancer metastasis. Indeed, highly efficient quantification of CTC in patient blood is a very



promising for early cancer diagnosis. However, extreme rarity of CTCs in bloodstream makes
it challenging to develop a methodology for isolating/counting of CTCs. Recent studies show
various technical advancements in CTC detection and characterization including size /
density-based centrifugation, immunomagnetic seperation, multiplex reverse-transcription
quantitative PCR (RT-PCR)-based methods, image-based approaches, and microfilter and
microchip devices.” However, these approaches have some limitations to be used in clinic due
to its low recovery rate and poor purity while requiring highly specialized sample processing
and handling. Therefore, it is necessary to develop a method that allows enhanced capture and
easy release of live cells from affinity surfaces for subsequent analysis and detection.
Recently, a number of studies have demonstrated enhanced local topographical interactions
between nanostructured substrates and nanoscale components of the cellular surface (e.g.,
microville, filopodia) as a result of increased cell/substrate contact frequency and duration,
consequently promoting cell capture efficiency through multivalent binding between cells and

nanostructured surface.®

|  ClCisolation |

Enrichment by density gradient centrifugation

=2 Diluted blood =3 Plasma
SEin
) =3 White bload cells
== Ficol — = Fieal
=2 Red biood cells
Immunomagnetic separation (18-23)
B1 Negative selection B2 Positive selection B3 Positive selection (more antibodies)

4 . . . Anti-EpCAM beads ‘i
wt- Anti-CD46 beads o CIC =« PEMCs « © PBMCs =3¢ Anti-EpCAM beads P = PBMCs <&  ppriMucy, ' CIC
Anti-CD146, antt-CD1768 (B]

| Combination of positive and negative selection |

Isolation by size (ISET) (24)

e e = Erythrocytes

3w CTC chip (27)

l Granulocytes

w0 CICS
g W Lmmet o|® (E ]

Figure 1-3. The current methods for CTC isolation.

In this grant, I plan to develop an efficient strategy to construct 3D conductive
nanowire to capture, isolate and release cells in response to applied electric field,

ultimately utilizing them as an efficient cell-capture/release tool.
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An Electroactive Biotin-doped Polypyrrole Substrate that Immobilizes and

Releases EpCAM-positive Cancer Cells

SeungHyun Jeonl, Jeong-Mi JMaonl, Eun Sook Lee, Yon Hui Kim, and Youngnam Cho*

Significant efforts have been directed toward the development of
novel strategies for sorting. characterizing, and subsequently
releasing desired pure cells from complex cell mixtures -3 Cell
1solation and detaled analysis of purified cells 15 essential for
research in a variety of fields such as fundamental biology and for
the development of new clinical diagnostics and therapeutic
modalities. The isolation of rare cells {e.g.. cancer stem cells and
circulating fumor cells) from various biological sources is of great
importance because the study of rare tvpes of cancer cells is critical
to unraveling previously inaccessible mechanisms that mught be
associated with cancer development and progression. In particular.
because circulating fumor cells play an mmportant role in the
metastasis of cancer. their detection could have an impact on
establishing the presence of metastasis, which could be useful in
point-of-care medical tests ¥ Approaches that rely primarily on
antigen-antibody affinity by recognizing biomarkers found on target
cell membranes with high affinity and specificity have been
developed. These include immune-magnetic beads. micro- and
nano-structured surfaces, and microfluidic devices. ™! Compared
with traditional bench-top methods (e.g.. flow cytomefers and
isolation by size of epithelial tumor cells), current platform-based
technologies have demonstrated improved cell recovery and purity
and enhanced enrichment of target cells from blood samples.
However., although recent findings have typically focused on
enhancing  capture  wvield and  sensitivity.,  techmiques for
demonstrating the feasibility of non-destructive release of captured
cells and subsequent characterization of retrieval cells have not been
actively developed.

This stady 15 an 1mfial attempt to develop a novel biotin-doped
conductive polvpyrrole (Ppv) platform ideally suited for i) the
specific capture and enrichment of epithelial-cell adhesion molecule
(EpCAM)-posifive cancer cells and u) their subseqguent non-
destructive. weak electnical potenfial-mediated release. Conducting
polymers such as Ppy have widely been used in novel polymeric
implants or even as dmug carriers because they can accommeodate a
variety of anions and cations including growth factors, anti-
inflammatory dmgs. ATP. glutamate. and protonated dopamine

through simple electro-polymerization " The dopants embedded
in the Ppy membrane are specifically released when triggered by
electric fields. In parallel with advances in drg delivery systems.
we applied this strategy to capture and release EpCAM-positive
cancer cells efficiently. Biotin, as a counter-anion for Ppy formation.
offers significant affinity interactions with targets through biotin-
streptavidin coupling, ultimately vielding a surface that is readily
available for the sequential absorption of biotinylated anti-EpCAM
as depicted in Scheme 1 (upper inset). Given that most surfaces are

i Biotin-doped Ppy =4
an Xown T EE

[ = Biotin M Streptavidin
{4 Y Bigtinylated anti-EpCAM /

Electrical
Stimulation
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Here, we propose an integrated multifunctional system constructed by conductive disulfide-biotin-
doped polypyrrole nanowires (5S-biotin-Ppy NWs) for capture, release, and in situ quantification of
circulating tumor cells (CTCs). A well-ordered three-dimensional nanowire structure equipped with a
monoclonal antibody offers a significant impact on the cell-capiure efficiency, as well as on electncal- or
glutathione (GSH)-mediated release of the captured cells. In addition, the electrochemical identification/
detection of the captured cancer cells can be directly conducted on the same Ppy NW platform by using
horseradish peraxidase (HRP)-labeled and anti-EpCAM-conjugated nanoparticles { HRP{anti-EpCAM Ppy
NPs), showing very high sensitivity and specificity. The signal amplification can be clearly attributed to
the catalytic response resulting from enzymatic reduction of hydrogen peroxide on Ppy NWSs, conse-
quently gemerating a greatly increased amperometric response with a detection range of 10 to
1 = 10" cells and a detection limit of as low as 10 cells. Overall, the proposed Ppy NWs not only present a
promising platform for effective cell capture and release but also permit cytosensing capability for on-
site analysis.

Keywaords:

Cancer diagnosis
Circulating tumor cells
Conducting polymer
Hedrical shmulation
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@ 2014 Elsevier Lrd. All nights reserved.

1. Introduction ranscription-polymerase chain reaction (RT-PCR), and iselation of

epithelial tumor cells by their size (ISET) [13—16]. Particularly,

Recently, significant efforts have been devoted for achieving a
better understanding of circulating tumor cells (CTCs) in order to
unravel the complex mechanisms governing cancer biology | 1-41.
As CTCs are very rarely present in the bloodstream, the detection
and isolation of viable tumor cells from an individual patient can
offer unigue opportunities in evaluating the metastasis; predicting
cancer progression; and deciding an effective treatment plan after
surgery, chemotherapy, or radiotherapy in clinics. Therefore, it is
highly desirable to develop simple, sensitive, and reliable methods
for efficient capture and release of target CTCs with high recovery

nanoscale topographic features have been reported as an effective
way to enhance the detection performance of rare cancer cells.

In our previous research, we demonstrated highly efficient cell
capturefrelease system using a conducting polymer, polypyrrole
(Ppy) [17]. By elecirochemically polymerizing biotin-doped Ppy on
electrodes, we attempted an electrical field-induced capture and
subsequent release of the adhered cancer cells. The greatest
advantage of Ppy is the reversible polymeric volume change ac-
cording to the applied electrical field [ 18,19]. Interestingly, Ppy film
expands up o approximately 35% at the oxidation state, ideally
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Abstract

We have developed a conductive nano-roughened microfluidic device and demonstrated its use as
an electrically modulated capture and release system for studying rare circulating tumor cells
(CTCs). The microchannel surfaces were covalently decorated with epithelial cancer-specific an-
ti-EpCAM antibody by electrochemical deposition of biotin-doped polypyrrole (Ppy), followed by
the assembly of streptavidin and biotinylated antibody. Our method utilizes the unique topo-
graphical features and excellent electrical activity of Ppy for i) surface-induced preferential
recognition and release of CTCs, and i) selective elimination of non-specifically immobilized white
blood cells (WBCs), which are capable of high-purity isolation of CTCs. In addition, the direct
incorporation of biotin molecules offers good flexibility, because it allows the modification of
channel surfaces with diverse antibodies, in addition to anti-EpCAM, for enhanced detection of
multiple types of CTCs. By engineering a series of electrical, chemical, and topographical cues, this
simple yet efficient device provides a significant advantage to CTC detection technology as
compared with other conventional methods.

Key words: cancer, cancer diagnosis, circulating tumor cells, conducting polymer, electrical stim-
ulation.
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ABSTRACT

We have suggested a novel method for the preparation of a label-free electrochemical immunosensor for
the detection of prostate-specific antigen {PSA) as target marker for prostate cancer. Direct incorporation
of PSA antibody (anti-PSA) into polypyrmole (Ppy) electropolymerized on a three-dimensional Au
nanowire array has resulted in enhanced molecular interactions, ulamately leading to improved sensing
performance, The electrochemical performance of the nanowire-based immunosensor array were
characterized by (1) differential pulse voltammetry (DFV) to evaluate the specific recognition of PSA,
(2) impedance and cyclic voltammetry to observe surface resistance and electroactivity, and {3) scanning
electron microscopy (SEM) to demonstrate the three-dimensional architecture. The vertically-aligned
geometric organization of Ppy provides a novel platform to improve the anti-PSA loading capacity.
Overall, enhanced electrochemical performance of the proposed immunosensor has been demonstrated
by its linear response over PSA concentrations ranging from 10 fgml ' © 10ngmL ' and a detection limit of
03 fgml ', indicating that the strategy proposed here has great potential for clinical applications.

© 2014 Elsevier BV, All rights reserved.

1. Introduction

and optical characteristics as well as high surface area with
enhanced reaction activity, nanostructure has great potentgal in

A lot of effort has been expended to achieve significant
progress in the field of immunosensors for the early detection
and monitoring of cancer markers in blood. Currently, using
various detection signals based on electrochemical, optical, mass,
or calorimetric-sensitive mechanisms, target analytes in biological
specimens can be easily detected and identified even at very low
levels (Owino et al, 2008, Liu et al,, 2008; Long et al., 2009; Tseng
et al, 2012; Yuan et al, 2012). Among these promising approaches,
electrochemical detection has attracted much interest because it
allows direct, specific, and real-time monitoring (Wilson, 2005;
Wan et al.. 2011). Electrochemical biosensors can recognize subtie

medical applications, particularly in diagnostic devices and point-
of-care testing. However, in spite of these advances, significant
challenges including complications in fabrication and subsequent
functionalization with desired biomolecules as well as problems
with regard to the chemical/mechanical stability of the sensor
architecture remain unaddressed.

Conducting polymers such as polypyrrole (Ppy), into which
various anions and cations including growth factors, anti-
inflammatory drugs, ATP, glutamate, and protonated dopamine
can be incorporated, can be electro-chemically deposited on
electrodes for use as implantable devices or drug carriers
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ABSTRACT: In this work, we introduce a free-standing, vertically aligned conductive polypyrrole (Ppy) architecture that can
serve as a high-capacity drug reservoir. This novel geometric organization of Ppy provides a new platform for improving the drug-
loading efficiency. Most importantly, we present the first formal evidence that an impregnated drug (dexamethasone, DEX) can
be released on demand by a focal, pulsatile electromagnetic field (EMF). This remotely controlled, on—off switchable polymer
system provides a framework for implantable constructs that can be placed in critical areas of the body without any physical
contact (such as percutaneous electrodes) with the Ppy, contributing to a low “foreign body” footprint. We demonstrate this
possibility by using a BV-2 microglia culture model in which reactive oxygen species (ROS) and inducible nitric oxide synthase
(iNOS) expression was attenuated in respense to DEX released from EMF-stimulated Ppy.

1. INTRODUCTION results similar to Teflon when implanted as a neural pmsl]'teijr:.+
Both glial and neuronal cells were found to be in infimate contact
with the Ppy material. Other studies noted that PPy extracts

evhihited na hemnlrbe  allereenic  ar mitaoenic nranerties

There are growing clinical demands for controlled and sustained
drug release systems to serve as implantable devices for patients
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1 Introduction

Electrically controlled release of the nerve growth
factor from a collagen-carbon nanotube composite
for supporting neuronal growth

*ab

Youngnam Cho**" and Richard Ben Borgens®

We report the use of a nerve growth factor-loaded collagen-carbon nanotube (NGF-Col-CNT) composite
a5 a substrate for in vitro growth of PC 12 cells. The feasibility of such novel composites as drug carriers was
assessed using an in Witro drug-release test (ELISA immunoassay) in the presence of an electrical field.
Subsequent studies included four-point probes, gyclic voltammograms, and in vitro PC 12 growth of
fibers. The facile incorporation of NGF within fibrous collagen structures significantly mediated PC 12
(nerve) fiber process formation during the application of electrical voltage. Indeed, electrical stimulation
(500 mV) using non-polarized Ag/Agd electrodes to electro-active composites fadlitated the sustained
release of NGF. Given that PC 12 cells require NGF in the media to produce fiber outgrowth, this assay
was dearly informative when the differentiation and branching of PC 12 cells into neurons was
significantly enhanced. NGF responses were also evident from other developmental events including
protrusions of neuronal filopodia and the formation of microspikes. Col-CMT composites, when
electrically stimulated, could serve not only as neuronal seaffolds, but also as an electrically controllable
drug release system to improve the performance and preferential timing of growth factor release in
various biomedical applications.

passage of electrieal current through the nanotube substrates
preferentially supports and guides neurites that might be

The intimate interaction of carbon nanotubes and biomole-
cules has inspired considerable interest in recent years. Indeed,
remarkable structural, electrical, and mechanical features of
the nanotubes make them suitable for developing unique
recognition-based tools at the molecular and cellular levels.'
In particular, the highly conductive characteristic of the fibrous
structures usually mimies the morphological features of the
native extracellular matrix (ECM) that would be vital for the
design and development of new hybrid systems in neuronal
engineering*® The desire to construct nanotube-based

associated with nerve regeneration.'* However, the complexity
associated with the optimization of an interface between neural
devices and tissues poses significant challenges. These not only
include the control of cell behavior(s) but also the induction of
physiologically important electrical signals to improve neuro-
logical functions. In addition, foreign material responses
induced by undesirable scar tissue formation after implanta-
tion of matrix materials, and the distinct differences in
mechanical compatibility between tissues and electrode, pose
nassible nrohlems sueh as nnnredictable deviee failure. These
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Doxorubicin-loaded hyaluronic acid—polypymole nanoparticles were
developed for pH-responsive activatable fluorescence imaging and
therapy of proliferating macrophages.

Atherosclerosis is the major reason for cardiovascular disease,
which aceounts for 39% of all global deaths under the age of 70."
Macrophages, representing up to 20% of the cells within
atherosclerotic lesions, play a pivotal mle both in the development
of atherosclerosis, and also in atheroma plague destabilization and
rupture, an occurrence that frequently leads to thrombo-ocelusive
complications (Le., myocardial infarction and strokes).” Thus, anti-
macrophage therapeutic strategies including systemic modulation of
macrophage activity and local photodynamie therapy using con-
ventional and smart photosensitizers have been attempt

It has recently been reported that the majority of macrophages in
atherosclerotic lesions are derived from local macrophage
proliferation rather than the inflammatory monocyte recruitment
from peripheral blood” These repons reveal that targeting macmo-
phage proliferation could be a new stmategy to treat established
atherosclerosis. However, fow studies have evaluated antiproliferating
agents.™” Here, we developed drug-loaded hyalurenic acid-
polypyrrole nanoparticles (HA-PPyNPs) as a smart theranostic
platform for noninvasive fluoreseence imaging and therapy of
proliferating macrophages in atherosclerotie lesions (Fig. 1).

We first synthesized hyaluronic acid-conjugated polypyrrole
nanoparticles (HA-PPyNPs), and then an antiproliferating agent

Paolypyrrole {(PPy)

-.».

mn, 2

Hyaluronic acid (HA)

e

o q )n-n
(4.5-5.5) k‘pd\ ] q,_[/\ﬁ
Proferating macrophage i \I’d\"’
g 7
$ . @ Fhrnm.semt Quaghen L e
i HATRE DOX Dioxornbicin (DOX)

Fig 1 Schematic diagram of the pH-responsive theranostic systemn. DOX
formms a charge complex with HA on the surface of polypymole nanoparticles,
leading to flucrescence quenching of DOX (OFF) through a FRET mechanism.
When DOX -loaded HA-PPyMNPs are taken up into the proliferating macrophage
cells, DOX release from the PPyNP surface is stimulated, resulting in both the
tum on of DOX Auorescence and therapy of the proliferating macrophages.

are reported to have an immense absorption coefficent (Le., 10" fold
to 10™fold higher than conventional organic fluorochromes) with a
broad peak,® and therefore may have great potential as ultra-efficent
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The development of a target-activatable “smart” platform with
high-affinity and specificity is of great importance for a wide range
of biomedical applications. Here, we attempted to develop a new
enzyme-activatable graphene oxide-photosensitizer complex as a
biologically tunable theranostic agent, making it promising for
near-infrared (NIR) fluorescence imaging and photo-induced cancer
therapy.

Recently, graphene and its derivative graphene oxide (GO) have
become particularly attractive materials because they possess
extraordinary electrical, optical, mechanical, and thermal
characteristics.” In particular, these materials have been shown
to exhibit ultra-efficient fluorescence-quenching abilities for
various fluorescent dyes as well as a strong surface plasmon
absorption in the near-infrared (NIR) region, supporting their
potential use in biosensing applications and lightinduced
photothermal cancer therapy.” In addition, the large surface
area of nano-sized graphene and GO, covering both sides of the
basal plane and the edges, creates an ideal loading platform for
various biomolecules and therapeutic agents, via either physical
adsorption or chemical conjugation strategies.” Recent studies
have extensively investigated graphene-based nanostructures
through efficient functionalization with biomolecules such as
DNA, aptamers, peptides, proteins, and cells, and these studies
have demonstrated the potential uses of these materials in
applications such as bioelectronics, biosensors, and medicine.”

Here, we attempted to develop a new enzyme-activatable
GO-photosensitizer complex as a biologically tunable theranostic

biocompatible and natural polysaccharide, was| used in this
study as a model polymeric enzyme-responsive substrate.
HA is mostly found in the extracellular matrix [ECM) and
tends to degrade rapidly through preferential eleavage of glyeo-
sidic linkages in the presence of hyaluronidase {HAdase).”
Next, a noncovalent complex between GO and HA-Ce6 (Le,
GO-HA-Ce6) was prepared vig physical adsorption of HA-Ce6
on the surface of GO plates (Fig. 1A). Close proximity of HA-Cef
to GO sheets in the GO-HA-Ce6 complex was expected to result
in strong inhibition of both fluorescence and singlet oxygen

2
Ly S

2

L
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HA-Cef conjugate
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