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Irinotecan is characterized by a wide interpatient variability in pharmacokinetics and
subsequent pharmacologic effects and toxicity. In addition, its pharmacology is complex and
may be dependent on the interplay of metabolizing enzymes and transporters. Therefore,
metabolizing enzymes, transporters, and other potential regulatory factors should be viewed
and evaluated as an integrated system rather than single component for the accurate
prediction of irinotecan-PK and toxicity. To define an integrated pharmacogenetic model for
predicting irinotecan pharmacokinetic and severe toxicity, we evaluated multivariate analysis
using 15 polymorphisms within seven genes with putative influence on metabolism and
transport of irinotecan. A total of 107 NSCLC patients treated with irinotecan were
evaluated for PK and genotyped for the UGT1Al #6, UGT1A1%28, UGT1A9*22,
ABCBI11236C>T, 2677G>T/A, 3435C>T, ABCC2-24C>T, 1249G>A, 3972C>T,
ABCG234G>A, 421C>A, and SLCOI1B1 - 11187G>A, 388A>G, and 521T>C, and CYP3A5+3
polymorphisms. Multivariate linear and logistic regression analyses including genotypes and
clinicopathologic factors were performed. SN-38 AUC was significantly correlated with
ANCs (r=-0.3, p=0.009) and grade 4 neutropenia (p=0.01). The UGT1A1#6/%6, UGT1A9*1/*1
or *1/%22 and SLCO1B1521TC or CC genotypes, and female-gender were predictive for
higher AUCSN-38 in multivariate analysis. Among them, SLCO1B1521TC or CC and
UGTI1A1#6/%6 genotypes were independently predictive for grade 4 neutropenia in
multivariate analysis (OR=3.8 and 7.4, respectively). Although no significant association was
observed between PK parameters and grade 3 diarrhea, UGT1A9*1/+1, ABCC23972CC, and
ABCG234GA or AA genotypes were independently predictive for grade 3 diarrhea in
multivariate analysis (OR=6.3, 5.6, and 5.1, respectively). Patient selection based on
integrated pharmacogenetic model would be helpful for predicting irinotecan-PK and severe
toxicities in NSCLC patients. However, cancer is a complex disorder caused by multiple
genetic factors and the understating of the precise role of all participating factors is still
limited. Therefore, more sophisticated approaches such as genome-wide linkage analysis and
integrate drug pathway profiling may be needed to develop an improved genetic—based
therapeutic strategy for NSCLC patients treated with irinotecan.
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partial response 56 42 24 249771
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disease progression 19 108 12 421422
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(\h Cisplatin & Gemcitabine resistance phenotype 4]

Purpose: To investigate whether polymorphisms in DNA repair genes affect clinical outcome of

never-smokers with lung adenocarcinoma (NSLA).

Experimental design: Common polymorphisms in RRM1,ERCC1,and XRCC1 were genotyped
onDNA from158patients among 313 NSLA who were randomized to receive gefitinib or
gemcitabine and cisplatin (GP) as first-line therapy. Immunohistochemistry for ERCC1 (n=38)

and direct sequencing of EGFR(n=42)wereperformedusingtumorsamples.

Results: Patients with XRCC1399Arg/Arg showed higher responserate(RR) to gefitinib
(71%v36%,P=0.002) and had more EGFR-mutant tumors (82%v29%,P=0.001) than those with
GIn allele. Patients with ERCC18092AA showed higher RR to GP than CC or CA genotypes
(100%v44%,P=0.043).WhencomparinggefitinibversusGP,patientswithXRCC 1399Arg/Arg(7.5v6.6mont
hs[M],P=0.013),RRM12464GG (11.5v6.0M,P=0.004), and ERCC18092CA
(7.5v6.4M,P=0.024)showedsignificantlylongerprogression-free survival (PFS) with gefitinib. When
these three genotypes were analyzed jointly, patients harboring more than two showed
significantly longer PFS with gefitinib (8.1v6.4M, P=0.009).Whereas, patients without these
genotypes showed a trend toward longer PFS with GP (6.3v2.0M, P=0.06). In a multivariate
Cox regression model, greater number of specific genotypes independently predicted improved

overallsurviva I(HR=0.5;95%CI,0.3-0.8;P=0.006).

Conclusions: Patients with XRCC1399Arg/Arg, RRM12464GG, and ERCC18092CA genotypes
did benefit from gefitinib. The greater number of these genotypes may predict favorable

prognosis for NSLA.



Table 1. Patients’ characteristics (n=158)

GP (n=77) Gefitinib ~ (n=81)
N (%) N (%) P

Age, years

Median (Range) 56 57 (32-74)

(19-71)

Sex 1.0
Male 7 9) 7 (9)

Female 70 (91) 74 (91)

Stage 1.0
B 7 (9) 7 (9)

v 70 (91) 74 (91)
Performance status (ECOG) 747
0 26 (34) 24 (30)

1 41 (53) 48 (59)

2 10 (13) 9 (11)
Second-line therapy

Platinum-based regimen 0 (0) 54 (81)
EGFR-TKIs 60 (81) 0 (0)
Non-platinum regimen 14 (19) 13 (19)

RRM1 2455A>G (rs3177016)

AA 24 (31) 27 (34) .846
AG 40 (52) 42 (52)

GG 13 (17) 11 (14)

RRM1 2464G>A (rs1042858)

GG 7 (9) 8 (10) .966
GA 28 (36) 28 (35)

AA 42 (55) 45 (56)

RRM1 -524C>T (rs11030918)

CcC 3 4) 8 (10) 323
CT 28 (36) 26 (32)

TT 46 (60) 47 (58)

RRM1 -37C>A (rs12806698)

CcC 46 (60 48 (59) 446
CA 28 (36) 26 (32)

AA 3 4) 7 9)

ERCC1 8092C>A (rs3212986)

CC 38 (49) 34 (42) 434
CA 35 (46) 39 (48)



ERCC1 118C>T (rs11615)
CC
TC
TT

XRCC1 Arg399GIn (rs25487)
Arg/Arg
Arg/Gin
GIn/GIn

ERCC1 expression (n=38)
Positive

Negative

EGFR mutations (n=42)
Positive

Negative

49
21

42
34

©®)

(64)
27
9)

(55)
(44)
(1)

(57)

(43)

(44)
(56)

50
26

45
29

13
11

(10)

(62)
(32)
(6)

(56)
(36)
)

(54)

(46)

(63)
(38)

.679

.086

.859

245




Table 2. Response rate by treatment assignment within genotypes, ERCC1 expression, and EGFR mutations

GP Gefitinib
PR (%) SD+PD (%) P PR (%) SD+PD (%) P P (GP vs. Gefitinib)

RRM1 2455A>G

AA 14 (61) 9 (31) 232 18 (67) 9 (33) 393 670

AG 15 (39) 24 (62) 21 (50) 21 (50) 296

GG 6 (46) 7 (54) 6 (55) 5 (46) 1.0
RRM1 2464G>A

GG 2 (29) 5 (71) 296 7 (88) 1 (13) 154 041

GA 15 (58) 11 (42) 14 (50) 14 (50) 571

AA 18 (43) 24 (57) 24 (53) 21 (47) 328
RRM1 -524C>T

cc 1 (33) 2 (67) 888 5 (63) 3 (38) 760 545

cT 13 (48) 14 (52) 13 (50) 13 (50) 893

TT 21 (47) 24 (53) 27 (57) 20 (43) 301
RRM1 -37C>A

cc 21 (47) 24 (53) 592 27 (56) 21 (44) 592 355

CA 13 (48) 14 (52) 13 (50) 13 (50) 893

AA 1 (33) 2 (67) 5 (71) 2 (29) 500
ERCC1 8092C>A

cc 17 (46) 20 (54) 082 17 (50) 17 (50) 268 733

CA 14 (41) 20 (59) (043%) 25 (B4) 14 (36) (.456%) .050

AA 4 (100) 0 (0) 3 (38) 5 (63) .081

ERCC1 118C>T
cc 25 (52) 23 (48) 351 27 (54) 23 (46) 934 1.0



TC 7 (33) 14 (67) 15 (58) 11 (42)
TT 3 (50) 3 (50) 3 (60) 2 (40)
XRCC1 Arg399Gin
Arg/Arg 22 (54) 19 (46) .304 32 (71) 13 (29) .006
Arg/Gin 13 (39) 20 (61) (.1839) 10 (35) 19 (66) (.002%
GIn/GIn 0 (0) 1 (100) 3 (43) 4 (57)
ERCC1 expression
Negative 5 (83) 1 (17) .026 6 (55) 5 (46) 1.0
Positive 1 (13) 7 (88) 7 (54) 6 (46)
EGFR mutations
Positive 3 (38) 5 (63) 1.0 13 (87) 2 (13) <.0001
Negative 4 (40) 6 (60) 1 (11) 8 (89)

.096
.849

.094
.690

1.0

333
.085

.026
.303

GP, gemcitabine and cisplatin; PR, partial response; SD, stable disease; PD, progressive disease by RECIST.

*ERCC18092CC+CAVAA
"XRCC1 399 Arg/Arg v Arg/GIn+GIn/GIn



Table 3. Association of genotypes with ERCC1 expression or EGFR mutations

ERCC1 expression (n=38) EGFR mutations (n=42)
Negative, N (%) Positive, N (%) P Negative, N (%) Positive, N (%) P
RRM1  2455A>G AA 8 (73) 3 (27) .056 9 (69) 4 (31) 112
AG 6 (29) 15 (71) 8 (35) 15 (65)
GG 3 (50) 3 (50) 2 (33) 4 (67)
RRM1  2464G>A GG 3 (75) 1 (25) .393 2 (50) 2 (50) .866
GA 6 (46) 7 (54) 7 (50) 7 (50)
AA 8 (38) 13 (62) 10 (42) 14 (58)
RRM1  -524C>T CC 2 (100) 0 (0) 140 3 (75) 1 (25) .346
CT 3 (27) 8 (73) 4 (33) 8 (67)
TT 12 (48) 13 (52) 12 (46) 14 (54)
RRM1 -37C>A CC 12 (48) 13 (52) 140 12 (46) 14 (54) .346
CA 3 (27) 8 (73) 4 (33) 8 (67)
AA 2 (100) 0 (0) 3 (75) 1 (25)
ERCC1 8092C>A CC 9 (64) 5 (36) 110 8 (50) 8 (50) .841
CA 8 (36) 14 (64) 10 (44) 13 (56)
AA 0 (0) 2 (100) 1 (33) 2 (67)
ERCC1 118C>T CC 12 (52) 11 (48) 410 11 (42) 15 (58) .280
TC 5 (36) 9 (64) 8 (57) 6 (43)
TT 0 (0) 1 (100) 0 (0) 2 (100)
XRCC1 Arg399GIn Arg/Arg 9 (50) 9 (50) .746 4 (18) 18 (82) .001
Arg/GIn 6 (38) 10 (63) 12 (71) 5 (29)

GIn/GIn 2 (50) 2 (50) 3 (100) 0 (0)




Table 4. Median progression-free survival by treatment assignment within genotypes, ERCC1 expression, and EGFRmutations

GP Gefitinib
No mo (95% CI) P No mo (95% CI) P P (GP v Gefitinib)

RRM1  2455A>G

AA 23 8.0 (4.9-11.1) 632 27 6.4 (4.5-8.3) 970 184
AG 40 6.5 (5.6-7.4) 42 4.1 (0.1-9.3) 102
GG 13 5.9 (4.4-7.4) 11 4.3 (1.4-7.2) 873
RRM1 2464G>A

GG 7 6.0 (0.1 -16.8) .851 8 11.5 (6.5-16.5) 212 .004

GA 27 7.0 (5.5-8.5) 28 4.3 (0.2-8.6) (.089)F .380

AA 42 6.3 (5.6-7.0) 45 4.1 (2.8-5.4) 690
RRM1  -524C>T

CcC 3 9.1 (0-20.5) .581 8 3.0 (0.1-7.0) .867 581
CT 27 6.9 (4.5-9.3) 26 4.1 (0.2-9.1) 426
1T 46 6.3 (5.7-6.9) 47 6.4 (2.9-9.9) .051
RRM1 -37C>A

CcC 46 6.3 (5.7-6.9) .581 48 5.9 (3.1-8.7) .962 .065
CA 27 6.9 (4.5-9.3) 26 4.1 (0.3-9.1) 434
AA 3 9.1 (0-20.5) 7 5.0 (0.1-11.2) 644
ERCC1 8092C>A

CC 37 6.3 (5.5-7.1) .586 34 3.6 (1.7-5.5) .068 634
CA 35 6.4 (5.2-7.6) 39 7.5 (5.7-9.3) (.022)f .024
AA 4 7.5 (5.5-9.5) 8 2.1 (0.1-9.2) 643

ERCC1 118C>T



CcC
TC

TT
XRCC1

Arg/Arg
Arg/GIn
GIn/GIn

ERCC1
Positive
Negative

EGFR mutations

Positive
Negative

No of specific genotypes*

0
1
2or3

49
21

41
34

15
41
21

6.4 (5.3-7.7)
6.6 (6.2-7.0)
5.3 (2.8-7.8)

6.6 (6.2-7.0)
6.3 (4.9-7.7)
1.1

5.9 (3.3-8.5)
5.1 (0.4-9.8)

5.1 (1.8-8.4)
5.9 (2.3-9.5)

6.3 (4.8-7.8)
6.5 (5.3-7.7)
6.4 (5.5-7.3)

.941

<.0001
(.714) #

.955

542

.849

50
26

45
29

13
11

19
35
27

5.9 (3.2-8.6)
4.1 (0.9-7.3)
8.8 (0.1-19.8)

7.5 (5.6-9.4)
2.1 (1.2-3.0)
2.6 (1.1-4.1)

7.5 (1.4-13.6)
5.9 (1.7-10.1)

8.0 (6.4-9.6)
1.9 (0.4-3.4)

2.0 (1.9-2.1)
5.9 (2.8-9.0)
8.1 (6.6-9.6)

.796

034
(.009)#

.806

.014

<.0001

510
329
.205

.013
.617
.353

451
.678

.155
.863

.063
194
.009

GP, gemcitabine and cisplatin; mo, months.

TRRM12464GGvGA+AA;tERCC18092CAVCC+AA#XRCC1 399 Arg/Arg v Arg/GIn+GIn/Gin
*RRM12464GG,ERCC18092CA,andXRCC1399Arg/Arg
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Figure 1. Kaplan-Meier curve for overall survival in relation to number of specific genotypes*
*RRM1 2464GG, ERCCI 8092CA, or XRCCI 399 Arg/Arg



t}) Comparison of EGFR mutations between tumor cells and plasma DNA from
NSCLC patients

Detection of EGFR mutations

Whole-blood and tissue samples were collected immediately before treatment. Plasma
was separated within 2 hr after the sample collection and stored at -80#C until used.
Genomic DNA was extracted from plasma and paraffin-embedded tissues by using the
QlAamp DNA mini kit (Qiagen, CA). We used peptide nucleic acid (PNA) clamping - based
asymmetric PCR with melting curve analysis using unlabeled probes.25 A capillary PCR
machine (Roche, Light Cycler, USA) was used instead of plate PCR, and the melting carve
analysis for the probe peak was done in the same machine. Forward and reverse primers
were designed to amplify the commonly mutated portions of exon fragments 19 and 21, and
the amplicon sizes were 91 and 89 base pairs, respectively. Locked nucleic acids were
incorporated into the forward primer of exon 19 to increase the annealing temperature. The
forward primer for exon 19 antisense PNAs and sense mutation probes were designed to
span the mutation sites of exons 19 and 21 of the EGFR gene. The antisense PNA
complementary to the wild-type sequence was used to clamp PCR for wild-type but not
mutant alleles. The sense mutation probes that were complementary to mutant alleles were
used to detect both wild-type and mutant alleles. The mutation probe for exon 19 was
complementary to E746-A750del type 1 (2235-2249del) and was used to detect wild-type
and E746-A750del type 2 (2236-2250del) mutant as well as E746-A750del type 1. The
mutation probe for exon 21 is complementary to L858R (T2573G) and was used to detect
both wild-type and L858R mutant alleles.

Comparison of EGFR mutations between tumor cells and plasm DNA

Among a total of 106 patients, 94 plasma DNA samples were adequate for EGFR
mutation analysis. Activating mutations were detected in 26 of 94 (28%) cases (23 exon 19
deletions and 3 exon 21 L858R mutations, Table 1). To validate the plasma EGFR mutation
results, we tested the two major EGFR mutations, the exon 19 deletion and exon 21
(L858R), in the paired tumor tissues. In the 15 paired specimens of plasma and tumor
tissues, 11 (73%) revealed concordant results. The comparison between EGFR mutation
status in plasma and tumor samples is summarized in Table 4. Although they were not
statistically significant, trends toward higher frequency of EGFR mutations were observed in
adenocarcinoma (32% [23/71] vs. 13% [3/23] for non-adenocarcinoma, P=0.107), women
(36% [16/45] vs. 20% [10/49] for men, P=0.101), and never smokers (33% [15/46] vs. 23%
[11/48] for ever smokers, P=0.294). Among the entire population, patients with EGFR-mutant
tumors showed significantly higher response rates (69% [18/26] vs. 21% [14/68] for wild-type
EGFR, P<0.0001), and longer PFS (HR=0.386 [95% CI, 0.238-0.627], P<0.0001) and OS
(HR=0.540 [95% CI, 0.316-922], P=0.024) compared to those with wild-type EGFR tumors.
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irinotecan pharmacogeneticsin Korean lung cancer patients

Irinotecan is characterized by a wide interpatient variability in pharmacokinetics and
subsequent pharmacologic effects and toxicity. In addition, its pharmacology is complex and
may be dependent on the interplay of metabolizing enzymes and transporters. Therefore,
metabolizing enzymes, transporters, and other potential regulatory factors should be viewed
and evaluated as an integrated system rather than single component for the accurate
prediction of irinotecan-PK and toxicity. To define an integrated pharmacogenetic model for
predicting irinotecan pharmacokinetic and severe toxicity, we evaluated multivariate analysis
using 15 polymorphisms within seven genes with putative influence on metabolism and
transport of irinotecan. A total of 107 NSCLC patients treated with irinotecan were evaluated
for PK and genotyped for the UGT1A1 *6, UGT1A1*28, UGT1A9*22, ABCB11236C>T,
2677G>T/A, 3435C>T, ABCC2-24C>T, 1249G>A, 3972C>T, ABCG234G>A, 421C>A, and
SLCO1B1 - 11187G>A, 388A>G, and 521T>C, and CYP3A5*3 polymorphisms. Multivariate
linear and logistic regression analyses including genotypes and clinicopathologic factors were
performed. SN-38 AUC was significantly correlated with ANCs (r=-0.3, p=0.009) and grade 4
neutropenia (p=0.01). The UGT1A1*6/*6, UGT1A9*1/*1 or *1/*22, and SLCO1B1521TC or
CC genotypes, and female-gender were predictive for higher AUCSN-38 in multivariate
analysis. Among them, SLCO1B1521TC or CC and UGT1A1*6/*6 genotypes were
independently predictive for grade 4 neutropenia in multivariate analysis (OR=3.8 and 7.4,
respectively). Although no significant association was observed between PK parameters and
grade 3 diarrhea, UGT1A9*1/*1, ABCC23972CC, and ABCG234GA or AA genotypes were
independently predictive for grade 3 diarrhea in multivariate analysis (OR=6.3, 5.6, and 5.1,
respectively). Patient selection based on integrated pharmacogenetic model would be helpful
for predicting irinotecan-PK and severe toxicities in NSCLC patients. However, cancer is a
complex disorder caused by multiple genetic factors and the understating of the precise role
of all participating factors is still limited. Therefore, more sophisticated approaches such as
genome-wide linkage analysis and integrate drug pathway profiling may be needed to
develop an improved genetic-based therapeutic strategy for NSCLC patients treated with
irinotecan.

DNA repair gene polymorphisms and benefit from gefitinib in never-smokers with
lung adenocarcinoma

In this report, we examined the relationship between seven SNPs in DNA repair genes
and clinical outcome of NSLA who were treated with gefitinib or GP as first-line therapy. We
found treatment-related differences in PFS and RR within those SNPs. Among patients with
XRCC1 399Arg/Arg, RRM1 2464GG, and ERCC1 8092CA genotypes, significantly longer
PFS was observed with gefitinib. These genotypes also showed a trend toward higher RR



to gefitinib. Moreover, patients harboring more than two specific genotypes showed
significantly longer PFS with gefitinib. Conversely, patients without any of them showed a
trend toward longer PFS with GP. We also noted that the greater number of specific
genotypes independently predicted better prognosis in NSLA. Although single gene effect
was minimal, the joint analysis of multiples SNPs showed a significant effect on survival.
These results support the substantial evidence of cumulative influence by multiple favorable
variants for predicting clinical outcome in lung cancer patients.

The lower DRC has been associated with higher lung cancer risk in never-smokers.
The XRCC1 399GIn variant allele is less likely to repair DNA damages and has been
associated with higher risk of lung cancer in never-smokers but lower risk in heavier
smokers.23, 24 Recently one study with 122 healthy Japanese workers found that individuals
with GIn allele had significantly higher DNA adducts in lymphocytes in never-or former
smokers but not in current-smokers.28 In our study, the XRCC1 399Arg/Arg genotype, which
is associated with intact DRC, showed favorable response and PFS benefit from gefitinib.
Moreover, this genotype was significantly associated with sensitive EGFR mutations. These
findings suggest that never-smokers harboring Arg/Arg genotype that is related with intact
DRC seem to have a relatively homogenous lung tumor that is characterized by somatic
mutations of EGFR gene rather than accumulating multiple genetic and epigenetic
alterations, which may lead to higher response to gefitinib and improved survival.

Two common polymorphisms in ERCC1, codon 118C>T and 8092C>A, have been
suggested to affect ERCC1 levels.8-11 Nevertheless, no significant difference in the ERCC1
mRNA level in tumors has been described.29 Consistently, we did not find any significant
relation between these SNPs and ERCC1 expression. Although no functional difference has
been described for ERCC1 8092C>A polymorphism, this polymorphism has been suggested
to affect ERCC1 mRNA stability, therefore, may be associated with lower DRC.30 Like
XRCC1 codon 399 polymorphism, a significant gene-smoking interaction was observed for
this polymorphism. Compared with the CC genotype, the AA genotype is associated with
higher lung cancer risk in never smokers but lower lung cancer risk in heavy smokers.
However, no significant association has been reported between the CA genotype and lung
cancer risk in never smokers.23 This finding suggests that the ERCC1 8092AA but not CA
genotype may not repair DNA damage efficiently, which results in higher levels of DNA
damages and increased risk of lung cancer and cancer progression in never-smokers. In our
study, differential RRs and PFS were observed within the ERCC1 8092C>A polymorphism.
When compared gefitinib versus GP, patients with ERCC1 8092CA genotype showed higher
RRs and improved PFS with gefitinib. Conversely, patients with the AA genotype showed a
trend toward higher RRs to GP compared with gefitinib. If considering only patients who
received GP as first-line therapy, patients with ERCC1 8092AA genotype showed a trend
toward higher RR to GP compared with those with CA or CC genotypes. These findings
may support the well documented disparate role of DNA repair in cancer susceptibility or
progression and platinum-sensitivity.

The RRM1-37C>A and -524C>T have been reported to be associated with promoter



3)

activity, however, no significant correlation with RRM1 expression has been reported. One
retrospective analysis showed that the RR37CC-RR524TT alleotype was associated with
improved survival in resected NSCLC.15 Whereas, another retrospective study in advanced
NSCLC showed that the RR37AC-524CT allelotype was predictive for higher RR to
gemcitabine-based chemotherapy but not survival benefit.16 In our study, none of them
showed any significant association with clinical outcome even with the haplotype analysis.
Instead, we found that patients with the RRM1 2464GG genotype showed higher RR and
longer PFS with gefitinib compared with GP. Although no functional difference has been
reported for RRM1 2464G>A polymorphism, an in vitro study has suggest that the variant
allele was associated with increased sensitivity to gemcitabine.31 Considering the role of
RRM1 in DNA synthesis and repair, the RRM1 2464GG genotype may have intact DRC
compared with GA or AA genotypes, which may lead to higher RR and longer PFS with
gefitinib.

In summary, we found that NSLA harboring SNPs related with intact DRC showed
improved survival. We also indentified that these SNPs are predictive for benefit from
gefitinib rather than GP. Incorporation of our findings supports a hypothesis suggesting that
the intact DRC may retard molecular events related to progression in already established
cancer through preventing additional multiple DNA damages, which in turn lead to benefit
from gefitinib treatment and improved survival in NSLA. It may provide the first strategic clue
for personalized therapy in NSLA using genotyping. Larger prospective trials that further
validate and refine the predictive and prognostic utility of these SNPs are desirable.

Comparison of EGFR mutations between tumor cells and plasma DNA from NSCLC patients

Increasing evidence of the superiority of gefitinib in patients with sensitizing EGFR
mutations has changed the paradigm of diagnosis and treatment of NSCLC patients.10-12
EGFR mutations are usually detected in tumor tissues. However, obtaining adequate tumor
tissue for such analysis is often difficult, particularly in patients with refractory NSCLC.
Recently, several groups have demonstrated that EGFR mutations identical to those in the
corresponding tumor tissues can be detected in plasma DNA, which can be used as a
biomarker for response to EGFR-TKIs.27-29 Because most patients in this study had
refractory NSCLC, we did not collect tumor tissues. Instead, plasma DNA was used to
identify EGFR mutation status. Although validation of the results from plasma DNA was
difficult due to the limited number of paired tumor tissues, 11 cases showed concordant
results among 15 paired samples. In addition, the presence of EGFR mutations was
significantly predictive for higher response rates and longer survival in both arms. This
finding may support the use of plasma DNA as a surrogate for tumor tissues for genetic
analysis, which is clinically important.



The significance of a negative result for an EGFR mutation is highly dependent upon
samples tested as well as methods performed. Direct DNA sequencing is a common
detection method but has well-known sensitivity limitations depending on the proportion of
tumor cells present in the material available for DNA extraction. The peptide nucleic
acid-locked nucleic acid (PNA-LNA) PCR clamp is capable of detecting EGFR mutations in
the presence of 100-fold background levels of wild-type EGFR from normal cells. Because of
its high sensitivity and specificity, PNA-LNA PCR clamp is considered suitable to detect
EGFR mutations in cytology samples. However, this method uses mutation-specific primers
and therefore can miss rare mutations (eg, L861Q or exon 18 mutations). Additionally, the
rate of detection of L858R in our study was very low compared with the rate of
E746_A750del. Similar results was also reported previously using Scorpion Amplified
Refractory Mutation System technology detect EGFR mutations in serum DNA. Further
analyses in much larger groups of patients will be necessary to clarify the low-frequency
L858R mutation could be due to assay-related false-negative findings.
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