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A. Research Purpose

Alteration of ELF which is responsible for TGF-b signaling induces the cancer in liver and
stomach. However, the detailed regulation of ELF is not established yet. Based on our
preliminary result on phosphorylation and identifcation of interaction protein, we will study
the role of ELF in cell regulation. We hope our study provide the informations for how
alteration of ELF leads the tumorigenesis and what is the characteristic of ELF-altered
tumor. Then it will be also helpful for developing the treatment for ELF-altered cancer.

B. Centents

1. The role of CDK4 in cell cycle deregulation due to loss of ELF: Our previous
studies showed that loss or downregulation of ELF leads G1/S transition and upregulation of
cyclin D1 and CDK4. To elucidate the activation of G1/S transition due to loss of ELF, we
will investigate this signaling pathway in biochemical and molecular biological approach.
Then, we will also examine that downregulation of CDK4 can prevent the abnormalities
caused by loss of ELF. This study will provide the information whether CDK4 is suitable
target for cancer due to loss of ELF.

2. Functional role of ELF cleavage by caspase: Recently, we identified that cleavage of
ELF was arisen by treatment of TGF-b. We have investigated what kind of protease is
responsible for this cleavage and what kind of cleavage products were generated by this
process. We will pursuit what is functional role of this cleavage in cell cycle regulation,
apoptosis, and localization. Then, we also investigate the relation between cleavage of ELF
and carcinogenesis by using tumor cell lines and primary tumors. We expect that elucidation
of this process will provide the information of regular life cycle of ELF and its contribution
to carcinogenesis.

C. Expected Contributions

We will investigate the biochemical and genetic interaction of ELF and interaction proteins
in liver carcinogenesis. We are especially interested in phosphorylational regulation and
communication with interaction protein. We believe that product of this study may be used
for marker and tumor status and contributed to tailored cancer therapy for ELF-altered
cancer. And model system of this study can be also applied for development of anti-cancer
drug.
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Transforming Growth Factor-f Adaptor, 2-Spectrin,
Modulates Cyclin Dependent Kinase 4 to Reduce
Development of Hepatocellular Cancer

Hye Jung Back,'* Michael J. Pishvaian,™* Yi Tang” Tae Hyun Kim,' Shaoxian Yang,” Majed Hl Zouhairi*
Jon Mendelson,* Kirii Shetty,” Bhaskar Kallakury,” Deborah L. Berry,” Kyung Hwan Shin,' Bibhuti Mishra,®
E. Premkumar Reddy,” Sang Soo Kim,' and Lopa Mishra®

Transforming growth factor beta (TGF-f) is an imporwant regulator of cell growth, and
loss of TGF-f signaling is a hallmark of carcinogenesis. The Smad3/4 adaptor protein f12-
spectrin (25P) is emerging as a potent regulator of tumorigenesis through its ability to
modulate the tumor suppressor function of TGF-fi. However, to date the role of the TGF-
p signaling pathway at specific stages of the development of hepatocellular carcinoma
(HCC), particularly in relation to the activation of other oncogenic pathways, remains
poorly delincated. Here we identify a mechanism by which 25T, a crucial Smad3 adaptor,

dulates cydin dependent kinase 4 (CDK4), cdl cyde progression, and suppression of
HCC. Increased expression of f2SP inhibits phosphorylation of the retinoblastoma gene prod-
uct (Rb) and markedly reduces CDK4 expression to a far greater extent than other CDKs and
cyclins. Furthermore, suppression of CDK4 by p2SP efficiently restores Rb hypophosphoryla-
tion and cell cyde arrest in G;. We further demonstrate that §25P interacts with CDK4 and
Smad3 in a competitive and TGF-f-depend: In addition, haploinsufficiency of
edbd in B2sp** mice tesults in a dramaric dedine in HOC formation compared to that
observed in i25p™ ' mice. Conelusion: f25P deficiéncy leads to CDK4 activation and contrib-
utes to dysregulation of the cell cyde, cellular proliferation, oncogene overexpression, and the
formation of HCCs. Our data highlight CDK4 as an attractive target for the pharmacologic
inhibition of HCC and demonstrate the importance of 2™~ mice as a model of predinical
efficacy in the treatment of HOC. (Hepstorocy 2011;53:1676-1684)

naling pathway is invelved in muliiple cellular progression and arresting cells in early G, phase. TGF-
processes, induding cell growth, differentiation, ff signaling is mediated by type I and type II trans-

adhesion, migration, and apoptosis. TGF-f is particu- membrane serine/threonine kinase receptors (TARI

Th: transforming growth factor # (TGF-fi) sig-  as a profound tumor suppressor by inhibidng eell gyele

larly active as an antimitogenic cytokine, functioning and TPRIT) and such intracellular mediators as the

Abbreviations: B2SP f24pecrvin; CDKA, cyclin dependens kinare 4; HOC, hepasocellular cancer; TGI-f, mangforming growth faczor-f.
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Impaired Skin and Mammary Gland Development and Increased
v-Irradiation-Induced Tumorigenesis in Mice Carrying a
Mutation of S1152-ATM Phosphorylation Site in Brca1

Sang $oo Kim."” Liu Cao,” lye Jung Baek.! Sung-Chul Lim.* Cuiling Li.” Rui-lHlong Wang,*

Xiaoling Xu.? Kwan Ho Cho.' and Chu-Xia l)cn,«:{2

"Radiation Medicine Branch, National Cancer Center, Goyang, Kores; *Genetics of Development and Disesse Branch, National Institute of
Diabetes, Digestive and Kidney Diseases, NIH, Bethesdu, Marylund: snd “Department of Pathology, College of Medicine,

Chosun University, Gwangiu, Korea

Abstract

The tumor suppressor BRCAI interacts with many proteins
and undergoes multiple mod

cations on DNA damage.
ATM. a key molecule of the DNA damage response, phosphor-
vlates S1189 of BRCAIL alter y-irradiation. S1189 of BRCAI is
known as a unique ATM phosphorylation site in BRCAI exon
1L Tostudy the functions of ATM-dependent phosphorylation
of BRCAT-ST189. we generaled a mouse model carrying a mu-
tation of ST152A (81152 in mouse Breal corresponds to STIS9
in human BRCAL) by gene targeling, Breal™ =404 g

were born at the expected ratio. unlike that seen in previous
studies of Breal-null mice. However, 36% of Breal®! #/A1524
mice exhibited aging-like phenotypes including growth retar-
dation, skin abnormalities. and delay of the mammary gland

morphogenesis, with an increase in apoplosis. Mulant mice
were hypersensitive to high doses of y-irradiation, di
shortened life span and reduction in intestinal villus
sociated with increased apoplosis. Aging-unaffected 18-
month-old Breqr® " 281

mary gland abnormalities with increased levels of eyelin D1

female mice also showed mam-

and phospho-ER-a, such as Breal-A1l mutation, On low-
dose y-irradiation, they suffered a marked increase in lumor
formation with an abnormal coat paltern. Furthermo
BrogpitiEAsE embryonie fibroblasts failed to accumulate
P53 on y-irradiation with delayed phoesphorylation of p33-
523, These observations indicate that ATM-mediated phos-
phorylation of S1189 is required for BRCAL functions in the
maodulation of DNA damage response and in the suppression
of tumor formation by regulating p53 and apoptosis. [Cancer
Res 200%69(24):9291-300]

Introduction

Ataxia-telangiectasia is a human autosemal recessive disorder
characterized by progressive neurodegeneration, immunodeficien-
cy, and cancer predisposition (1), The ataxia-telangiectasia cellular
ph ype includes ck 1 instability, radi ativity, and

Note: Supplementary data for this erticle are available at Cancer Kesearch Onling
(http:/ fcancerresaacrournalsorg/).
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failure to adequately activate cell cycle checkpoints (2). Ataxia-tel-
angiectasia-mutated {ATM), the gene product defective in ataxi
telangiectasia, is a ber of the pk itid nase fam-
ily, which is involved in the recognition of damage i

Germ-line mutations in BRCAL and BRCA2 are respon
the majorily of hereditary breast cancers and cause almost al fa-
milial cases involving both breast and ovarian cancers (4, 5). The
BRCAI protein is a tumor suppressor that has a crucial role in the
maintenance of genomic integrity, BRCA1 achieves this by inte-
grating important cellular processes such as regulation of genetic
stability, DNA damage repair, centrosome duplication, apoptosis,
and cell eyele control (6). BRCAI contains 24 exons thal encode
proteins of 1863 and 1,812 amino acids in the human and mouse,
respectively (7. 8). Notably, more than 60% of the prolein is en-
coded by an unusually large exon, exon 11 which is 34 kb in
length. In addition to the full-length BRCAT protein (BRCAI-FL),
a deletant, BRCAI-ATI, arises from in-frame splicing between exon
10 and exon 12, but retains the highly conserved NHy-terminal
RING finger and COOH-terminal BRCT domains found in full-
length BRCAL {9-12). To study the functions of BRCAL and to
create animal models for BRCAT-associated breast cancer. mice
carrying varions mutations in Breal have been generated by gene
targeting (reviewed in ref, 13}, Breal-null embryos die at embryon-
ic day (E) 65 to 85 (11-16), whereas embryos that lack Breal-FL
due Lo targeted deletion of exon 11 (Breal”"77) but still express
the Breal-A11 isoform die at E12 to EIR5 (17). In addilion, surviv-
ing Breal™'"*" mice that had lost one or both p33 alleles exhib-
ited aging phenotypes with tumor formation (17, 18). Moreover,
Cre-mediated excision of exon 11 of Breal in mouse mammary ep-
ithelial cells caused abnormal ductal development attributable to
induction of apoptosis (19). However, Breal™* mutant mice,
which lack the Breal-A11 isoform, did not display any develop-
mental defects, and the incidence of tumor formation in such ani-
mals was significantly lower than that in Breal”'"'" mice,
indicating that exon 11 of Breal is essential for proper functioning
of Breal in development and tumor suppression (20).

The DNA damage response involves the sensing of DNA damage
followed by transduction of the damage signal 1o a network of cel-
lular pathways, inclading cell cycle checkpoints, DNA repair, and
the apoptotic system (21). It has been shown thal BACAT under-
goes regulation by phosphorylation on DNA damage and cell cycle
progression (22). In this network, ATM is also a eritical regulator of
checkpoint signal cascades: it phosphorylates and activates several
molecules including H2AX, p53, and CHK1 to execute the DNA
damage response (2, 23). ATM also phosphorylates BRCAL in re-
sponse Lo onizing radiation i vive and dr vitro in a region that
contains clusters of serine and glutamine residues (24). Analys
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ATM is required for rapid degradation of cyclin D1 in response to y-irradiation
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DMA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1
and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles

in the development of several human cancers, To study the regulation of cyclin D1 in the DNA-dam-

aged condition, we analyzed the proteolyric regulation of cyclin D1 expression upen y-irFadiation
Repwarir; Upon y-iradiation, a rapid reduction in cydin D1 levels was observed prior to p53 stabilization, indi-
:flrrlrlandi:wn cating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis
ATM revealed that irradiation fadlitated ubiquitination of cyclin D1 and that a proteasome inhibitor
Degradation blocked cyclin D1 degradation under the same conditions. Interestingly, afrer mutation of threonine
Ubsiqu ination residue 286 of cyclin D1, which is reported to be the GSK-3f phosphorylation site, the mutant protein
showed resistance to imadiation-induced proteolysis although inhibitors of GSK-3 failed to prevent
cydin D1 degradation. Rather, ATM inhibition rkedly p cyclin D1 ion induced

by y-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required
for maintenance of genomic integrity achieved by rapid amest of the cell-cycle, and that disruption of
this crosstalk may increase susceptibility to cancer.

2008 Elsevier Inc. All rights reserved.

The cellular response to DNA damage caused by y-irradiation in-
volves the activation of checkpoint pathways that imposea delay on
cell-cycle progression and control DNA repair and replication [12].
This process is triggered by several umor suppressors including
ATM (Ataxia Telangiectasia Mutated), Chk2, p53, and p21, which
are essential for cell-cycle checkpoint activity and genetic stability
[3,4]. Thus, alterations in these processes lead to the accumulation
of mutations resulting in increased susceptibility to cancer.

Cell-cycle progression is rightly regulated, in part by the levels
of cycling and the activiries of cyclin-dependent kinases (CDKs).
Uncontrolled cell division caused by aberrant regulation of cyclins
and CDKs is considered a hallmark of transformation and cancer
[5]. Cyclin D1 is the regulatory subunit of a holoenzyme that phos-
phorylates and inactivates Rb protein, which forms a complex with
proteins of the E2ZF family [6]. Hyperphosphorylated Rb releases
E2Fs, which regulate transcription of genes required for DNA rep-
lication and promote progression through the G1/S phase of the
cell-cycle 7). Amplification or overexpression of cyclin D1 plays
pivotal roles in the development of several human cancers, includ-
ing parathyroid adenoma, breast cancer, colon cancer, lymphoma,
melanoma, and prostate cancer [8].

* Corrésponding suthor. Fax: +82 31 920 2494,
E-muail address: sangsookim@necre kr (S5 Kim )

0D006-291X/$ - see front matter © 2008 Else vier Inc. All rights reserved.
doi: 10.1016/1.bbre 2008.11.132

Expression of cyclin D1 is largely influenced by transcrip-
tional activation induced by several growth factors through the
activity of transcription factors including AP-1, STATs, NF-xB,
5P-1, cAMP-response element binding protein, and T-cell factor
[9]. In addition to transcriptional regulation, the level of cyclin
D1 protein is also regulated by post-translational control involv-
ing ubiquitin-dependent proteolysis. Recently, glycogen synthase
kinase-3p (GSK-3f) and dual-specificity tyrosine-phosphorylation
regulated kinase 1B (DYRKIB) have been reported to enhance
cydin D1 degradation by phosphorylating cyclin D1 threonine
residues 286 and 288, respectively [10-12], Interestingly, GSK-
3p and DYRK1B share glycogen synthase as another common
substrate (other than cyclin D1), suggesting that cyclin D1 regu-
lation by these kinases may be related to metabolic control [13]
DNA damage also causes rapid degradation of cyclin D1, result-
ing in immediate cell-cycle arrest at the G1 phase, independent
of p53 levels [14]. This process prevents both initiation of the
G1/S phase mansitdon and accumulation of mutatons, indicating
thar cyclin D1 degradation is an essential component of the cel-
lular response to DNA damage. However, not yet clear how
degradaton of cyclin D1 is initiated by vy ation.

Here, we show that rapid degradation of cyclin D1 induced by
v-irradiation requires the tumor suppressor ATM, which is rapidly
activated by DNA damage. Thus, we show how the DNA damage re-
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IN VIVO RADIOBIOLOGICAL CHARACTERIZATION OF PROTON BEAM AT THE
NATIONAL CANCER CENTER IN KOREA: EFFECT OF THE CHK2 MUTATION
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Purpose: The relative biological effectiveness (RBE) in the presence or absence of CHK2 was estimated at the Ko-
rean National ('auur ‘enter Proton Therapy Center (NCCPTC).

he proton beam was fixed at 210 MeV with 6-cm spread-out Bragg peaks (SOBPs) be-
ccted to be the most frequently used clinical setting, X-rays were obtained using a 6-MV conven-
tional lincar accelerator. The RBE was estimated from the survival of jejunal crypt in C3H/He and Chk2Z" mice.
Results: The estimated RBEs of the NCCPTC at the middle of the SOBP were 1.10 and 1.05 in the presence and
absence of CHK2, respectively. The doses that reduced the number of régenerated erypt per jejunal circumference
t0 20 (Dyg) in C3H/He e were 14.8 Gy (95% confidence interval [CI], 13 ) for X-raysand | 1y (95% C1,
15.3) for protons, By contrast. the doses of Dy in Chk2" mice were 15,7 Gy (95% CL 15.0-16.4) and 14.9 Gy
I, 14.0-15.8) for X-rays and protons, respectively.

Conclusions: The RBE of the NCCPTC is clearly within the range of RBEs determined at other facilities and is
consistent with the generic RBE value of 110 for 150- to 250-MeV beams. The mutation of Chk2 gave rise to radio-

resistance but exhibited similar RBE.

Proton beam, RBE. Crypt regeneration assay, CHK2.

INTRODUCTION

The Korean National Cancer Center Proton Therapy Center
(NCCPTC), which opened in March 2007, is the one of new-
est proton facilities for the clinical use of proton radiother-
apy. An important feature of proton beams arises from the
physical aspects of their dose distribution. Proton beams
can provide highly localized, uniform doses of radiation to
tumors, while sparing the surrounding normal tissues, com-
pared with conventional modalities using photons or elec-
trons. Although there are no randomized clinical trials
comparing proton beam therapy with conventional X-ray
therapy, the superiority of clinical effectiveness of proton
beam therapy might result from its previously mentioned
physical characteristics ( 1). This is why proton beam therapy
is considered a promising new treatment for malignant -
mors, and why the number of proton beam therapy facilities
worldwide has increased over the last 10 years,

© 2011 Elsevier Inc.

It has been shown that equal physical doses of different
types of radiation do not produce equal biological effects,
because of differences in their energy deposition patterns.
Thus this difference must be considered in clinical applica-
tions that use alternative modalities to photons. This is taken
into account by the concept of relative biological effective-
ness (RBE): The RBE of a tested radiation “T™ (e pro-
tons) in comparison with a reference radiation * (most
often ®Co +y-rays or linear accelerator X-rays) is the ratio
of the doses Dp/D that produce the same biological effect.
The RBE is a simple concept: however its clinical applica-
tion is complex, hecause the RBE depends on several fac-
tors, including particle type, energy, dose, dose per
fraction, number of fractions. and cell or tissue type. and dif-
fers between the early and late reactions after irradiation.
The consideration of RBE ensures that radiation oncologists
can benefit from the large clinical experience gained with
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